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Abstract Femtocell is a promising technique to enhance
indoor coverage and improve network capacity. Neverthe-
less, because of the random and co-channel deployment
of femtocells, the macrocell will suffer serious cross-tier
interference from femtocells in two-tier femtocell networks.
Thus, interference mitigation in femtocell networks has
been an indispensable task. Meanwhile, with the explosive
popularity of smart terminals, especially smart phones and
tablets, the wireless networks have loaded a mount of data
services with diverse delay quality of service (QoS) require-
ments. However, due to the stochastically varying nature
of wireless physical channel, it is extremely difficult to
offer a deterministic delay guarantee in wireless networks.
Therefore, the effective capacity of femtocell users (FU)
has been introduced to provide a statistical delay QoS pro-
visioning. For that reason, in this paper, we will study the
interference mitigation with statistical delay QoS guarantee
in uplink two-tier orthogonal frequency division multiple
access (OFDMA) femtocell networks. In order to mitigate
the cross-tier interference at macrocell base station (MBS),
we adopt a price-based power control strategy, in which the
MBS protects itself by pricing the interference from FU.
Additionally, to guarantee the statistical delay QoS for each
FU, effective capacity is introduced into their utility func-
tions. Then, a Stackelberg game is formulated to study the
joint utility maximization of the MBS and the FUs sub-
ject to a maximum tolerable interference power constraint
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at the MBS. Subsequently, based on the mathematical anal-
ysis of the equilibrium of the formulated Stalkeberg game,
a particle swarm optimization (PSO) aided power allocation
(PSOPA) algorithm is proposed to solve this optimization
problem. At last, simulation results show that our proposed
PSOPA algorithm can not only improve significantly the
average effective capacity of each FU and guarantee their
statistical delay QoS, but also converge successfully.

Keywords Femtocell · Interference mitigation · Delay
QoS · Effective capacity

1 Introduction

By the end of 2014, the number of mobile-connected
devices will exceed the number of people on earth, and by
2018 there will be nearly 1.4 mobile devices per capita [1],
which will cause explosive wireless data explosion in wire-
less networks. In addition, studies on wireless usage show
that more than 50 percent of all voice calls and more than
70 percent of data traffic originate indoors [2]. To keep pace
with this data explosion, femocell base station (FBS) has
been put forward by the industry as a cost-effective means
of offloading the macrocell network [3].

Femtocells, also called home base stations (HBS),
are short-range, low-cost and low-power BSs which are
installed by the consumer for better indoor voice and data
reception, and they communicate with the cellular network
over a broadband connection such as digital subscriber line
(DSL), cable modem, or a separate radio frequency (RF)
backhaul channel [2]. They provide operators with a promis-
ing technique to enhance the indoor coverage with very litter
cost, which not merely improves network capacity but also
prolongs the life of phone battery.
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Generally speaking, it is more practical for operators
to deploy two-tier femtocell networks, which consists of
femtocells deployed in macrocell networks, by sharing the
spectrum, because of the scarce availability of spectrum
resources and the absence of coordination on spectrum allo-
cation between the macrocell and femtocells. However, due
to the random and co-channel deployment of femtocells, the
macrocell will suffer serious cross-interference in two-tier
femtocell networks, which will greatly restrict the perfor-
mance of the wireless network. Therefore, interference miti-
gation in femtocell networks has been an indispensable task
since they were proposed. A great deal of scholarly works
related to interference mitigation have recently appeared
in the literature on design of spectrum-sharing femtocell
networks. In [4], the author proposes a fully decentralized
method for interference mitigation based on the observa-
tion of the signal to interference plus noise ratio (SINR) of
all active communications in both macro and femtocells. In
[5], inspired by the spirit of cognitive radio technology to
mitigate detractive interference, a cognitve radio resource
management (CRRM) scheme has been proposed. Paper
[6] treats the uplink interference problem in OFDMA-based
femtocell networks with partial cochannel deployment. In
[7], the author derives the per-tier outage probability by
introducing a simplified mathematics model that provides
closely approximate femtocell interference distribution. In
[8], the author considers a distributed power control strat-
egy, modeled as a noncooperative game, where users max-
imize their utilities in a multicell system. Admittedly, the
strategies proposed in [4–8] can mitigate cross-tier interfer-
ence effectively, however, both of them haven’t considered
the QoS guarantee in femtocell networks.

Related works in consideration of QoS guarantee for
femtocell users have been studied in [9–14]. In [9], the
author analyzes the power consumption and QoS support
levels, which is represented by the average transmission
bandwidth, in a femtocell network. In [10], a spectrum
splitting methods with QoS-oriented fairness metric provi-
sioning, which considers the ratio of the sum capacity of
the macrocell to the sum in femtocell network has been
proposed. In [11], a new QoS management scheme, which
translates the QoS requirements into appropriate number
of slots within the WiMax frame, has been proposed for
WiMAXFemtocell Access Point (WFAP). In paper [12], the
author studies the admission control for femtocell commu-
nications by predicating the QoS metrics such as network
loads/congestion indications and QoE metrics. In [13], the
outage probability has been taken into consideration as the
QoS metric in the interference management scheme. In
paper [14], the power control strategy via game theoretic
approach has been studied, which considers the macrocell
users’ QoS in terms of SINR. In conclusion, the QoSmetrics
involved in lecture [9–14] generally include the SINR, data

rate, outage probability, or the load/congestion indications,
and so on, but the delay QoS has been seldom considered.

Actually, with the popularity of the smart mobile termi-
nals, such as smart phones and tablets, the wireless networks
have loaded a mount of data services with diverse delay
QoS requirements. For instance, a mixture of delay sen-
sitive applications (e.g. video teleconferencing) and delay
tolerant ones (e.g., web browsing and file downloading)
must be supported in order to provide the users with good
experience. Therefore, delay QoS guarantee for high-data-
rate services in two-tier femtocell networks has recently
become a increasingly significant and challenging research
area.

However, due to the time-varying nature of wireless
channels, it is quite difficult to impose a deterministic delay
guarantee for services over wireless networks. To address
this issue, the concept of effective capacity has been pro-
posed [15], which is defined as the maximum constant
arrival rate that a wireless physical channel can support
to guarantee the statistical delay requirements. In paper
[16–18], the effective capacity has been widely adopted
to provide the statistical delay provisioning to ensure a
small steady-state delay violation probability. But these
power allocation strategies provisioning statistical delay
QoS in [16–18] are mainly aiming at a single cell, which
is extremely different from the practical two-tier femtocell
networks.

In this paper, we consider the uplink of the OFDMA
two-tier femtocell networks, with femtocells overlaying the
macrocell. Here, we talk about the system capacity pro-
visioning statistical delay QoS, which can be modeled as
effective capacity. If a FU individual transmits data at a
higher power, its effective capacity will be higher, but the
interference to the macrocell will get larger. As there is a
threshold at the macrocell base station, the transmit power
should not be overlarge in order to guarantee the communi-
cation quality in the macrocell networks. Therefore, in order
to mitigate the cross-tier interference from FU to the MBS
and provide a statistical delay QoS guarantee for all FUs, we
propose a power allocation algorithm named PSOPA, which
can enhance significantly the system’s effective capacity.

The contributions of this paper are summarized as fol-
lows:

(1) In order to mitigate the cross-tier interference at the
MBS side, this paper proposes a pricing power control strat-
egy, in which the MBS protects itself by pricing the interfer-
ence from femtocell users. In addition, the MBS restricts its
received interference power to a maximum tolerable margin
at the MBS receiver.

(2) In this paper, we adopt the effective capacity in
the utility functions of femtocell users to ensure a small
steady-state delay violation probability and good delay-QoS
guarantee.
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(3) We formulate the power allocation problem as a
Statelberg game to jointly maximizes the revenue at the
MBS and the effective capacity of the femtocell users, under
the given QoS requirements. In this game, the MBS is
the leader and the femtocell users are the followers. The
leader (MBS) sets prices firstly, and the followers (FUs)
adjust their power strategies based on the given prices. The
Statelberg equilibrium has been analyzed mathematically
in sparsely and densely deployed scenarios, respectively.
Subsequently, PSO algorithm has been used to search the
equilibrium point and an efficient power control algorithm,
named PSOPA, has been proposed. The basic idea for this
power control algorithm can be briefly concluded into the
following two layers:

• outer-layer: PSO-based search for the optimal inter-
ference price;

• inner-layer: for a given price, each FU chooses a
proper transmit power.

The remainder of this paper is organized as follows. In
Section 2, we describe the system model and formulate
the problem as a pricing Stackelberg game. Subsequently,
in section 3, the Statelberg equilibrium has been analyzed
mathematically in sparsely deployed and densely deployed
scenarios, respectively, and a PSOPA algorithm has been
proposed to obtain the SE point. In Section 4, simula-
tion results are presented to analyze the performance of
the proposed algorithm. Finally, we conclude the paper in
Section 5.

2 System model and game formulation

In this section, firstly, we describe the system model of
the two-tier femtocell network and introduce the concept
of effective capacity. Secondly, we formulate the power
allocation problem as a Stalkberg game and investigate its
equilibrium.

2.1 Network description

We consider the uplink of a two-tier OFDMA femtocell
network, where K femtocells are underlaying in a macro-
cell. To take advantage of the spectrum, all the femtocells
and the macrocell will share the same spectrum. Obviously,
there will exist co-channel interference, such as cross-tier
interference from the FUs to the macrocell and intra-tier
interference between each femtocell in the network.

We assume that a femtocell will independently allocate
its subchannels, and there is only one scheduled active user
during each time slot. As the subchannels are orthogonal
between each other in OFDMA networks, we assume that
each subchannel can be allocated independently among the
scheduled active FUs at each time slot. Hence, in this paper,

we study the power allocation on a single subchannel in
uplink of the femtocell network, but it is worth pointing out
that this assumption can be easily extended to broadband
femtocell systems with parallel frequency subchannels. As
a result, this two-tier femtocell network can be simplified as
Fig. 1 shows. In addition, for the purpose of exposition, all
channels involved are assumed to be independently block-
fading, which means that the channel gains retain constant
during each transmission block, but vary from one block to
another.

Let Bk denote FBS k, where k ∈ K = {1, 2, ..., K}. FU k

represents the scheduled active user serviced by Bk and its
transmit power is pk . Let hk,j and gk be instantaneous chan-
nel power gains from FU k to Bj and from FU k to the MBS
respectively. We assume that, the additional interference at
the Bk’s side from the macrocell users is regarded as the
background noise, which is independent Gaussian random
process with zero mean and variance σ 2.

The SINR of FU k on the considered subchannel is
expressed as

γk(pk, p−k) = pkhk,k
∑

j �=k

pjhj,k + σ 2
, ∀k ∈ K, (1)

where p−k denotes other FUs’ transmit power except FU k.
According to the Shannon’s capacity formula, the ideal

achievable data rate of FU k is

Rk(pk, p−k) = wlog2(1 + γk(pk, p−k)), (2)

where w is the bandwidth of the subchannel.
To guarantee the reliability of the macrocell, at the

MBS side, the received cross-tier interference should be
restricted to a certain threshold. We assume that the maxi-
mum interference the MBS can tolerate is Imax dBm, then
the following constraint should be satisfied at MBS side:

K∑

k=1

gkpk ≤ Imax, (3)

2.2 Effective capacity (EC)

As the explosion of the time-sensitive services in the wire-
less networks, it is more and more vital to take the delay-
QoS metric into consideration when allocating the wireless
resources. For the purpose of improving the experience for
each user, in this paper, each femtocell should provide het-
erogeneous delay-QoS services for its FUs. However, as the
result of the time varying nature of physical wireless chan-
nel, Rk(pk, p−k) is stochastically varying, which makes it
extremely difficult to provide an accurate delay bound guar-
antee for FU k. Therefore, we introduce the statistical QoS
metric and delay-bound violation probability to describe the
delay-QoS for each FUs.
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Fig. 1 The system model of the
two-tier femtocell network

We assume that the data will be put into a first-in-first-
out (FIFO) buffer before being transmitted in the physical
channel. According to [10], the steady-state delay violation
probability of FU k is

P {Dk ≥ Dmax
k } ≈ e−θkckD

max
k , (4)

where Dk represents the actual delay and is a random vari-
able, Dmax

k is the delay bound, θk is the statistical delay
exponent of the FU k and ck is a constant determined by the
arrival and service processes. For a given Dmax

k , a smaller
θk leads to a larger P {Dk ≥ Dmax

k }, which implies a looser
delay-QoS constraint. Otherwise, a larger θk corresponds to
a more stringent delay-QoS constraint.

After taking the statistical QoS metric into consideration,
EC has been proposed to describe the arrival data which
considers the delay-QoS requirements. It is defined as the
maximum constant arrival data rate at the link layer that a
given service process (wireless physical channel) can sup-
port under the given statistical delay requirement specified
by θk [18]. Analytically, the EC of FU k is given by

Ec(θk) = − 1

θkT
ln

{
E

[
e−θkT Rk(pk,p−k)

]}
, (5)

where E is the expectation operator and T is the block dura-
tion. It is obvious that as θk gets larger, which means a
stringent delay-QoS constraint, the EC of FU k decreases.
The effective capacity model can be simply described in
Fig. 2.

2.3 Stackelberg game formulation

Stackelberg game is a strategic game that consists of a leader
and several followers competing with each other on certain

resources. The leaders have the priority to make their deci-
sions, and the followers do subsequently [19, 20]. Both of
them take action rationally and selfishly to improve their
own revenues.

In this paper, we formulate the power allocation prob-
lem as a Stackelberg game, in which the MBS is the leader
and protects itself by imposing a set of prices on per unit of
received interference power from each FU, and the FUs are
the followers, which update their power allocation strate-
gies to maximize their individual EC based on the assigned
interference prices.

2.3.1 The utility function at the FU side

At FU’s side, definitely, each FU expects to have a much
higher effective capacity. Considering that ln(x) is a mono-
tonically increasing function, from Eq. 5, a higher Ec(θk)

means a larger function value of −E
[
e−θkT Rk(pk,p−k)

]
.

Therefore, the utility for FU k can be formulated as

Uk(pk, p−k) = −E

[
e−θkT Rk(pk,p−k)

]
− λkIk(pk), (6)

Fig. 2 The Effective Capacity Model

Author's personal copy



Mobile Netw Appl

where Ik(pk) = gkpk is the interference quota FU k would
like to buy from the MBS under the interference price λk .
It is observed from Eq. 6 that the utility function of each
FU consists of two parts: the profit, represented by the first
part, and the cost, described by the second part. If the FU
k increases its transmit power, the profit increases, which
implies larger effective capacity, but it will definitely cause
more interference to the MBS and needs to pay for it at
the cost of λkIk(pk). For each FU k, this problem can be
formulated as

Problem2.1 : maxUk(pk, p−k), (7a)

pk ≥ 0, ∀k ∈ K (7b)

pk ≤ pmax, ∀k ∈ K (7c)

θk > 0, ∀k ∈ K, (7d)

where pmax is the maximum transmit power of FU k on this
subchannel.

2.3.2 The utility function at the MBS side

At the MBS’s side, if the price it imposes on each FU
is too high, it would happen that no FU could afford the
interference quota and choose to transmit data on the given
subchannel, which would lead to the decrease of the spec-
trum efficiency. In another extreme, if the price is too low,
each FU would be happy to increase their power as high as
possible, which would also cause severe cross-tier interfer-
ence to the MBS in the uplink. Thereby, at the MBS’s side,
its intention is to maximize its revenue expressed by

UM(λ, p) =
K∑

k=1

λkIk(pk), (8)

where λ = [λ1, λ2, ..., λK]T represents the interference
price vector, and λk denotes the price that is set on the
interference from FU k. p = [p1, p2, ..., pK]T is power
allocation matrix for all the FUs. In addition, Eq. 3 should
also be satisfied in order to restrict total interference at the
MBS. Therefore, the problem should be searching the opti-
mal interference prices λ to maximize its revenue within its
tolerable aggregate interference margin, Imax . The problem
can be formulated as:

Problem2.2 : maxUM(λ, p), (9a)
K∑

k=1

Ik(pk) ≤ Imax, (9b)

λ > 0. (9c)

Based on the analysis above, Problem 2.1 and Problem
2.2 together form a Stackelberg game. In this game, all
the players take action selfishly and rationally. The leader

(MBS) anticipates to adjust the price λ to improve its util-
ity, and each follower (FU) is eager to increase its transmit
power to boost its EC. The leader take action firstly, and the
followers take action subsequently. The ultimate objective
of this game is to attain the SE point(s), from which neither
the MBS nor each of the FUs has the incentive to deviate.

2.4 Stackelberg equilibrium

For the proposed Stackelberg game, the SE is defined as
follows.

Definition 2.1 Let p∗ = (p∗
1 , p∗

2 , ..., p∗
K) be a solution for

Problem 2.1 at all the FUs and λ∗ = (λ∗
1, λ∗

2, ..., λ∗
K) be a

solution for Problem 2.2. Then the point (λ∗, p∗) is a SE
for the proposed Stackelberg game if for any (λ, p), the
following conditions are satisfied:

UM(λ∗, p∗) ≥ UM(λ, p∗), (10)

Uk(p
∗
k , p∗−k, λ∗) ≥ Uk(pk, p∗−k, λ∗). (11)

It is not difficult to see that for a given λ, all the FUs
strictly compete in a non-cooperative manner, which can be
seen as the non-cooperative subgame. Therefore, each round
of the Stackelberg game can be conducted as the following
two main steps: firstly, the leader will take action and set a
price set for the followers; secondly, the followers observe
the leader’s strategy and compete in a non-cooperative
manner, which can be described as

G = {K, {Pk}k∈K, {Uk}k∈K}, (12)

whereK denotes the set of all the active FUs, Pk denotes FU
k’s power strategy space, and Uk is FU k’s utility function,
which is expressed as Eq. 6.

Generally, the SE for a Stackelberg game can be obtained
by finding its subgame’s Nash Equilibrium (NE) point
firstly. Then, the best response of the MBS will be readily
obtained by solving Problem 2.2 based on the subgame’s
NE solution. Thus, the SE can be obtained as follows. For
a given λ, Problem 2.1 is solved firstly. Then, based on
the obtained best response functions p∗ of the FUs, which
is a function of λ, we solve Problem 2.2 for the optimal
interference price λ∗.

3 Power allocation algorithm

In this section, we provide the solutions for the formu-
lated problems with the following steps: analyze the utility
of each FU mathematically and find the NE for the non-
cooperative subgame firstly, and search the SE point subse-
quently. For expositive simplicity, we assume that the MBS
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gives interference price for each FU uniformly, namely λ1 =
λ2 = ... = λK = λ, where λ is the uniform interference
price. Actually, the solution also suit for the non-uniform
price case.

3.1 NE of the non-cooperative subgame

3.1.1 Sparsely deployed scenario

Firstly, we consider the sparsely deployed scenario, i.e., in
rural areas, where the interference between each femtocell
can be negligible, i.e., hj,k = 0, ∀j �= k. As a result, the
Problem 2.1 can be translated into

Problem3.1 : max E

[

−e
−θkwT log

(
1+ hk,kpk

σ2

)]

− λgkpk, (13a)

pk ≥ 0,∀k ∈ K (13b)

pk ≤ pmax,∀k ∈ K (13c)

θk > 0,∀k ∈ K. (13d)

Theorem 1 For a given interference price λ, Uk(pk, p−k)

is a concave function over pk , which has a unique optimal
solution as

p̂k(λ) = σ 2

hk,k

[(
θkβhk,k

λgkσ 2

) 1
1+θkβ − 1

]

. (14)

where β = wT
ln 2 .

Proof In this paper, we assume that the f (hk,k) repre-
sents the probability density function (PDF) of hk,k . Then
Uk(pk, p−k) can be represented as

Uk(pk, p−k) = E

[

−e
−θkwT log2

(
1+ hk,kpk

σ2

)]

− λgkpk

= ∫
[

−e
−θkwT log2

(
1+ hk,kpk

σ2

)

− λgkpk

]

f (hk,k)dhk,k

(15)

The first and second derivates ofUk(pk, p−k) are respec-
tively

∂Uk(pk,p−k)
∂pk

= E

{
∂

∂pk

(

−e
−θkwT log2

(
1+ hk,kpk

σ2

)

− λgkpk

)}

= E

{
∂

∂pk
[−

(
1 + hk,kpk

σ 2

)−θk
wT
ln 2 − λgkpk]

}

= E

{
hk,kθk

σ 2
wT
ln 2

(
1 + hk,kpk

σ 2

)−
(
θk

wT
ln 2+1

)

− λgk

}

= ∫ [hk,kθk

σ 2 β
(
1 + hk,kpk

σ 2

)−(θkβ+1) − λgk]f (hk,k)dhk,k

(16)

and

∂2Uk(pk,p−k)

∂2pk
= ∂

∂pk

[
∂Uk(pk ,p−k )

∂pk

]

= − ∫
[

θk(θkβ + 1)
h2k,k

σ 4 β(1 + hk,kpk

σ 2 )
−(θkβ+2)

]

f (hk,k)dhk,k

,

(17)

where β = wT
ln 2 .

As Eq. 17 shown, ∂2Uk(pk,p−k)

∂2pk
≤ 0 is satisfied at any

pk in its solution space. Thus, the objective function is a
concave function over pk and has a unique optimal solution.

According to the theory in [21], for a given interfer-
ence price λ, the optimal solution for Eq. 15 should satisfy
∂Uk(pk,p−k)

∂pk
= 0. Then merely optimal solution is given by

p̂k(λ) = σ 2

hk,k

[(
θkβhk,k

λgkσ 2

) 1
1+θkβ − 1

]

. (18)

Thus, Theorem 1 is proved.
Theorem 1 demonstrates the existence and uniqueness

of the global optimal solution in Uk(pk, p−k). Therefore,
solution of Problem 3.1 is accordingly

p∗
k (λ) =

{
min{p̂k(λ), pmax}, λ <

θkβhk,k

gkσ
2

0 , λ ≥ θkβhk,k

gkσ 2

. (19)

It is observed that for a given interference λ, the NE for
the subgame at FU side can be easily obtained at p∗

k (λ). If

the interference price is too high, i.e., λ ≥ θkβhk,k

gkσ 2 , FU k will
not transmit data on this subchannel. In other extreme, FU k

will translate at pmax .

3.1.2 Densely deployed scenario

In this part, we consider the densely deployed scenario, i.e.,
in the urban area, where mutual interference between each
femtocell can not be neglected. Based on the conclusion
similar to Theorem 1, for given λ and p−k , the best response
function of FU k can be obtained as

p̂k(λ, p−k) = z2(p−k)

hk,k

[(
θkβhk,k

λgkz2(p−k)

) 1
1+θkβ − 1

]

, (20)

p∗
k (λ, p−k) =

⎧
⎨

⎩

min(p̂k(λ, p−k), pmax), λ <
θkβhk,k

gkz2(p−k)

0 , λ ≥ θkβhk,k

gkz2(p−k)

,

(21)

where z2(p−k) = σ 2 + ∑

j �=k

pjhj,k .
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In non-cooperative game, the formula (21) actually rep-
resents the strategy FU k would like to give based on all the
other players’ strategies, including λ and p−k .

Theorem 2 A Nash equilibrium exists in game in G =
{K, {Pk}k∈K, {Uk}k∈K} if the following conditions are sat-
isfied. ∀k ∈ K,

(1)Pk is a nonempty, convex and compact subset of some
Euclidean space 	K .

(2) Uk(pk, p−k) is continuous in p and quasi-concave in
pk .

Obviously, the condition (1) in Theorem 2 is satisfied
in game G. Moreover, as is proved in Theorem 1, the
Uk(pk, p−k) is concave in pk . Thus, Theorem 2 estab-
lishes the existence of NE point(s) in this non-cooperative
power control subgame. Nevertheless, the monotonicity of
Uk(pk, p−k) in pk is not certain in Eq. 6. According to
the theorem in [22], there generally exist multiple NEs, but
there is no efficient algorithm to obtain all of them.

Fortunately, since the inter-femtocell channel power
gains are usually very weak due to the penetration loss, we
can assume that the aggregate interference at Bk’s receiver
received from other femtocell co-channel FUs in uplink
is bounded, i.e.,

∑

j �=k

pjhj,k ≤ δ, where δ is the upper

bound. Here, we can merely consider the worst case, i.e.,
∑

j �=k

pjhj,k = δ, ∀k ∈ K. If we denote σ 2+δ as z2, the prob-

lem at the FU side will be exactly the same as Problem 3.1
with σ 2 replaced by z2. So the NE point is unique at this
case and the NE can be calculated by formula (21).

3.2 The equilibrium of the Staclkberg game

As analyzed above, for a given λ, the NE of the non-
cooperative subgame will be obtained under the sparsely
deployed scenario and the densely deployed one with
inter-femtocell interference seriously restricted. Substitut-
ing p∗

k (λ)(k ∈ K) into Problem 2.2, the optimization
problem at the MBS side can be formulated as

problem3.2 : max
K∑

k=1
λgkp

∗
k (λ) (22a)

K∑

k=1
gkp

∗
k (λ) ≤ Imax, (22b)

λ > 0. (22c)

By solving Problem 3.2, we will obtain the proper price,
λ∗, which brings the largest revenue at the MBS side. After
that, SE will be obtained when we substitute λ∗ into Eq. 19
or Eq. 21.

In general, problem 3.2 is difficult to solve directly. In
this paper, we choose to utilize the PSO algorithm to search
the optimal price.

3.3 PSO aided power allocation algorithm

3.3.1 PSO (Particle Swarm Optimization)

PSO, firstly proposed by Dr. Kennedy in [23], is an evo-
lutionary computation technique based on swarm intelli-
gence. It utilizes a simple intelligent mechanism that mimics
swarm behavior in birds flocking and fish schooling to
guide the particles to search for globally optimal solutions.
Owing to the bio-mimic hunting behaviors, PSO algorithm
can search the optimal solution quite fast. In addition, the
parameters in PSO algorithm are very little, which makes it
very easy to operate. In consideration of these advantages,
we will introduce it into our paper to assist searching the
optimal solution for our proposed problems later.

Each individual in the swarm is a volume-less particle
in solution search space, which contains two parameters:
the position and the flying velocity. The position represents
potential solution of optimization problem in search space,
and the flying velocity determines the direction and step of
the search at present. The particle flies in search space at
a definite velocity which is dynamically adjusted by trac-
ing the best position found so far by its own and that of
the whole swarm at present. Particle swarm tracks the two
best current positions, moves to better region gradually, and
finally arrives at the best position of the whole search space
[24, 25].

Denote the position and flying velocity of a particle as
x and v, respectively. The performance of the position is
evaluated by the fitness function, denoted as F , using x as
input. The higher the function value, the better the position.
At each iteration, each particle records its personal optima,
xp, which represents the best position it has achieved so far.
At the same time, the swarm records the best position, called
as global optima and denoted as xg. As shown in Fig. 3,

Fig. 3 The Update of Particle and Velocity
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the velocity and position of a particle are updated at each
iteration according to the formulas given below

v(t +1) = ωv(t)+c1r1(xp(t)−x(t))+c2r2(xg(t)−x(t)),

(23)

x(t + 1) = x(t) + v(t + 1), (24)

where t represents iteration number; ω is inertia weight; r1
and r2 are random numbers independently and uniformly
distributed in the range [0,1]; c1 and c2 are the learning fac-
tors, which are usually both set to 2.0 based on the trial
results.

The first part of Eq. 23 is previous velocity of particle,
reflecting the the particle’s memory. The second part is cog-
nitive action of particle, reflecting particle’s thinking. The
third part is social action of particle, reflecting information
sharing and mutual cooperation between particles.

In addition, ω is the inertia weight to obtain tradeoff
between the local and global research. In practice, at the
beginning, to search the solution space expansively, the indi-
vidual experience is important and the ω should be large.
But when approaching to global optima, in order to acceler-
ate the convergence, the inertia weight should be reducing
to small degree. Thus, in this paper, we introduce a linear
decreasing inertia weight which is described as

ω(t) = tmax − t

t max
(ωmax − ωmin) + ωmin, (25)

where, ωmax and ωmin are respectively the maximum and
the minimum inertia weight; tmax is the maximum times of
iteration.

After each update, they record the best position, and
finally the particles swarm will find an optimal position in
the solution space. The cessation condition of iteration is
that the greatest iteration number arrives or the best previous
position fits for the minimum adaptive value.

Usually, the convergence property of the PSO algorithm
is correlating to population of the swarm, which is defined
as the number of the particles in swarm. More the number,
the more positions will be searched at one time. Then, at
the same iteration number, the swarm with larger population
will search more positions than the swarm with smaller one.
Thus, in practice, a larger population in a swarm would lead
to an more accurate search in PSO algorithm.

3.3.2 PSO aided power allocation

Based on the analysis above, we propose a PSO aided
power allocation (PSOPA) algorithm, which would not only
mitigate the cross-tier interference at the MBS from FUs,
but also improve each FUs’ EC. The basic idea can be
concluded into the following two layers:

1) outer-layer: search for the optimal price λ with PSO;
x is taken as λ∗ and the fitness function is defined as
F(λ∗) = ∑

λ∗Ik(λ
∗).

2) inner-layer: for a given price λ∗, each FU choose a
transmit power with the conclusion (19) or (21).

The complete algorithm is shown in Algorithm 1.

4 Simulation and numerical analysis

In this section, we conduct several simulations to verify the
performance of our proposed power allocation algorithm
in two-tier OFDMA femtocell networks. Firstly, the con-
vergence property of our proposed PSOPA algorithm has
been shown. Secondly, the performance of the femtocell
networks based on PSOPA is considered.

We simulate our algorithm on a MATLAB-programmed
platform. In this platform, FBSes are randomly distributed
within the coverage of a central MBS and the FUs are
randomly located within the coverage of their belonged
FBSes. The mainly scalable parameters are listed in Table 1
[26], where d represents the transmitter-receiver separation
in meters and Lw is the penetration loss through external
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Table 1 Simulation Parameters

Parameter Value

Macrocell radius 500m

Femtocell radius 10m

Carrier frequency 2.5GHz

Subchannel Bandwidth 200KHz

Number of FBS 10-15

FU maximum power 23dBm

Background noise −70dBm

Indoor path loss (38.46 + 20 lg d) dB

In-outdoor path loss (38.46 + 20 lg d + Lw) dB

walls assumed to 15dB here. Here, we mainly consider the
sparsely deployed scenario, but the densely deployed one
with inter-femtocell interference seriously restricted will be
also simulated later.

4.1 Convergence property of PSOPA

In this subsection, we study the convergence property of our
proposed PSOPA algorithm. Without loss of generality, the
maximum interference the MBS can tolerate can be set to -
85dBm. The number of the femtocells is 10. The delay-QoS
exponent constraints for the FUs, which represent different
delay requirements, are respectively set as θk = 10−3(k =
1, 2, 3, 4, 5) and θm = 10−2(m = 6, 7, 8, 9, 10).

During the simulation proceeding, we have set the popu-
lation of swarm at different number. Take the swarm num-
bers as 6, 12 and 18 for representation and the respective
results are shown in Fig. 4. It illustrates that our pro-
posed PSOPA algorithm converges respectively at the 7th,
15th and 20th iterations. Thus, the results substantiate that
PSOPA algorithm can converge successfully. Meanwhile,
the figure also shows that larger swarm number in PSO will
bring a slight revenue gain to the MBS. The reason is that
a larger population means a more dense search at one iter-
ation, and would assist to search a solution that get much
closer to the real optimal one. But, after the population gets
large enough, i.e., 12, the gain will be negligible.

4.2 Performance of PSOPA-based two-tier femtocell
networks

4.2.1 Average FU’s EC versus delay-QoS exponent

The relationship between the average FU’s EC and the
delay-QoS exponent is studied in this part. Here, we set the
number of femtocells to 10. The interference constraint is
-85 dBm, without loss of generality. We conduct the simu-
lation at different delay-QoS exponent θ and the results are
shown in Fig. 5. As obviously shown in Fig. 5, when θ is

Fig. 4 Convergence Property of the PSOPA Algorithm

smaller than 10−6, which implies quite a loose delay-QoS
constraint, the average EC of all FUs is just the average
Shannon capacity of them. As the θ gets larger, which
means a more stringent delay-QoS constraint, the average
EC decreases. The results coordinate with the conclusion in
Section 2.

To make a comparison, we also consider the FNRAG
algorithm and the EIPA algorithm. It’s obviously pre-
sented in Fig. 5 that our proposed PSOPA algorithm can
bring higher average EC compared with FNRAG algorithm,
which is also price-based. The reason is that the interference
price λ in FNRAG is determined by a try-and-error method
and kept invariable, but λ in PSOPA is adjusted dynamically
according to the varying of physical channel. Meanwhile,
the EIPA algorithm, which divides equally the interference
threshold, Imax dBm, to each FUs, leads to the least aver-
age EC. The reason is that it just allocates power simply and
does not consider about the channel characteristics.

Fig. 5 Average EC vs. the Delay-QoS exponent θ
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4.2.2 Average FU’s EC versus interference constraint

In this part, we investigate the relationship between aver-
age EC of each FU and the interference constraint at the
MBS side. Here, the number of femtocells is also set to 10,
and the population of the swarm is 18. As shown in Fig.
6, the average EC of all FUs increases as the Imax gets
larger. It is because as more interference can be bought from
the MBS, the FUs can obtain more interference permission
and transmit at higher power level. However, as it reach
some level, i.e., -80dBm, the average EC increases little and
finally stays stable, because although tolerable interference
constraint at MBS is large enough, the power each FU can
transmit is not infinite. In addition, with the same interfer-
ence constraint, the average EC with θ being 10−3 is always
higher than that with θ being 10−2.5, which is in accordance
with the conclusion given above.

4.2.3 Influence of the number of the femtocells

Here, we investigate the influence of the number of the fem-
tocells on the aggregate EC of all the FUs. Figure 7 shows
that, under a certain interference constraint, as the number
of femtocells increases, more FUs will share the scheduled
subchannel, thus the aggregate EC will definitely increases.
However, as the number gets larger than a certain level, the
average aggregate EC stay stationary. It’s because that the
number of the FUs actually permitted to translate data at this
subchannel is limited as a result of the restriction of the total
interference at the MBS.

4.2.4 Simulation in densely deployed scenario

Finally, the relationship between the aggregate EC and the
interference constraint at the MBS in the densely deployed
scenario has been studied. In this scenario, we consider that

Fig. 6 Average EC vs. Interference Constraint

Fig. 7 Aggregate EC vs. Number of Femtocells

the total inter-femtocell interference at Bk(k ∈ K) is seri-
ously restricted within δ, which is confirmed by the degree
of density in the practical circumstance. The number of the
femtocells is 60, and all the delay-QoS exponents are set to
10−3. Simulation results, shown in Fig. 8, demonstrate that,
similar to the sparsely deployed scenario, the aggregate EC
of all FUs grows larger with the increase of the interference
constraint at the MBS, and it will stay stable when the inter-
ference constraint arrives at a certain degree, such as -80
dBm. Meanwhile, in ideal case, with δ = 0, the aggregate
EC achieves the highest but it will decrease with the increase
of δ.

Additionally, the aggregate EC at different number of
femtocells in femtocell networks with inter-femtocell inter-
ference restricted has also been studied. As shown in Fig. 9,
when the number of femtocell increases, the aggregate EC
will increase at first, but stay steady when the number gets

Fig. 8 Aggregate EC vs. Interference Constraint in densely deployed
Femtocell Networks
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Fig. 9 Aggregate EC vs. Number of Femtocells with different δ

large enough, because of the interference constraint at the
MBS.

5 Conclusions

As a result of the random and co-channel deployment of
femtocells, the macrocell will suffer serious cross-tier inter-
ference from femtocells in two-tier femtocell networks.
In addition, with the explosive popularity of smart termi-
nals, the wireless networks have loaded a mount of data
services with diverse delay QoS requirements. In order
to mitigate the cross-tier interference at MBS, we have
adopted a price-based power control strategy, in which
the MBS protects itself by pricing the interference from
FUs. Additionally, to guarantee the statistical delay QoS
for each FU, the effective capacity has been introduced
into the utility function of each FU. Based on the math-
ematically analysis of a Stackelberg game aimed at joint
utility maximization of the MBS and the FUs, we have
proposed an efficient power allocation algorithm, named
PSOPA. Finally, simulation results have shown that our
proposed PSOPA algorithm can not only improve sig-
nificantly the average effective capacity of each FU and
guarantee their statistical delay QoS, but also converge
successfully.
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